61.24.52 problem 52

Internal problem ID [12465]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 52
Date solved : Tuesday, January 28, 2025 at 07:59:40 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{\prime } y-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +1\right )}{2 x^{4}} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 189

dsolve(y(x)*diff(y(x),x)-a*(2*x-1)*x^(-5/2)*y(x)=1/2*a^2*(x-1)*(3*x+1)*x^(-4),y(x), singsol=all)
 
\[ \frac {\frac {18 \left (x +\frac {3}{2}\right ) \sqrt {\frac {\left (x -1\right ) a +y x^{{3}/{2}}}{x \left (y \sqrt {x}+a \right )}}\, 7^{{5}/{6}} \sqrt {5}\, \left (\frac {\left (-3 x -1\right ) a -3 y x^{{3}/{2}}}{x \left (y \sqrt {x}+a \right )}\right )^{{1}/{6}}}{1225}+1458 \left (-\frac {a}{x \left (y \sqrt {x}+a \right )}\right )^{{2}/{3}} x \left (\int _{}^{\frac {-\frac {18 y x^{{3}/{2}}}{35}+\frac {9 \left (-2 x -3\right ) a}{35}}{x \left (y \sqrt {x}+a \right )}}\frac {\textit {\_a} \left (5 \textit {\_a} -9\right )^{{1}/{6}} \sqrt {7 \textit {\_a} +9}}{\left (35 \textit {\_a} +18\right )^{{2}/{3}} \left (1225 \textit {\_a}^{3}-3159 \textit {\_a} -1458\right )}d \textit {\_a} +\frac {c_{1}}{1458}\right )}{x \left (-\frac {a}{x \left (y \sqrt {x}+a \right )}\right )^{{2}/{3}}} = 0 \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],x]-a*(2*x-1)*x^(-5/2)*y[x]==1/2*a^2*(x-1)*(3*x+1)*x^(-4),y[x],x,IncludeSingularSolutions -> True]
 

Not solved