Internal
problem
ID
[12084]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-2
Problem
number
:
12
Date
solved
:
Wednesday, March 05, 2025 at 04:14:43 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*x^n*y(x)^2-a*b*x^(n+1)*ln(x)*y(x)+b*ln(x)+b; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*x^n*y[x]^2-a*b*x^(n+1)*Log[x]*y[x]+b*Log[x]+b; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(a*b*x**(n + 1)*y(x)*log(x) - a*x**n*y(x)**2 - b*log(x) - b + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*b*x**(n + 1)*y(x)*log(x) - a*x**n*y(x)**2 - b*log(x) - b + Derivative(y(x), x) cannot be solved by the lie group method