61.24.63 problem 63

Internal problem ID [12476]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 63
Date solved : Tuesday, January 28, 2025 at 03:14:48 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime } y-\frac {a \left (\left (n +2\right ) x -2\right ) x^{-\frac {2 n +1}{n}} y}{n}&=\frac {a^{2} \left (\left (n +1\right ) x^{2}-2 x -n +1\right ) x^{-\frac {3 n +2}{n}}}{n} \end{align*}

Solution by Maple

dsolve(y(x)*diff(y(x),x)-a/n*((n+2)*x-2)*x^(-(2*n+1)/n)*y(x)=a^2/n*((n+1)*x^2-2*x-n+1)*x^(-(3*n+2)/n),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],x]-a/n*((n+2)*x-2)*x^(-(2*n+1)/n)*y[x]==a^2/n*((n+1)*x^2-2*x-n+1)*x^(-(3*n+2)/n),y[x],x,IncludeSingularSolutions -> True]
 

Not solved