61.24.64 problem 64

Internal problem ID [12477]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 64
Date solved : Tuesday, January 28, 2025 at 03:14:54 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime } y-\frac {a \left (\frac {\left (n +4\right ) x}{n +2}-2\right ) x^{-\frac {2 n +1}{n}} y}{n}&=\frac {a^{2} \left (2 x^{2}+\left (n^{2}+n -4\right ) x -\left (n -1\right ) \left (n +2\right )\right ) x^{-\frac {3 n +2}{n}}}{n \left (n +2\right )} \end{align*}

Solution by Maple

dsolve(y(x)*diff(y(x),x)-a/n*((n+4)/(n+2)*x-2)*x^(-(2*n+1)/n)*y(x)=a^2/(n*(n+2))*(2*x^2+(n^2+n-4)*x-(n-1)*(n+2))*x^(-(3*n+2)/n),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],x]-a/n*((n+4)/(n+2)*x-2)*x^(-(2*n+1)/n)*y[x]==a^2/(n*(n+2))*(2*x^2+(n^2+n-4)*x-(n-1)*(n+2))*x^(-(3*n+2)/n),y[x],x,IncludeSingularSolutions -> True]
 

Not solved