61.24.65 problem 65

Internal problem ID [12478]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 65
Date solved : Tuesday, January 28, 2025 at 03:15:01 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime } y+\frac {a \left (\frac {\left (3 n +5\right ) x}{2}+\frac {n -1}{n +1}\right ) x^{-\frac {n +4}{n +3}} y}{n +3}&=-\frac {a^{2} \left (\left (n +1\right ) x^{2}-\frac {\left (n^{2}+2 n +5\right ) x}{n +1}+\frac {4}{n +1}\right ) x^{-\frac {n +5}{n +3}}}{2 n +6} \end{align*}

Solution by Maple

dsolve(y(x)*diff(y(x),x)+a/(n+3)*((3*n+5)/(2)*x+(n-1)/(n+1))*x^(-(n+4)/(n+3))*y(x)=-a^2/(2*(n+3))*((n+1)*x^2-(n^2+2*n+5)/(n+1)*x+4/(n+1))*x^(-(n+5)/(n+3)),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],x]+a/(n+3)*((3*n+5)/(2)*x+(n-1)/(n+1))*x^(-(n+4)/(n+3))*y[x]==-a^2/(2*(n+3))*((n+1)*x^2-(n^2+2*n+5)/(n+1)*x+4/(n+1))*x^(-(n+5)/(n+3)),y[x],x,IncludeSingularSolutions -> True]
 

Timed out