61.27.6 problem 16

Internal problem ID [12516]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 16
Date solved : Tuesday, January 28, 2025 at 08:02:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 48

dsolve(diff(y(x),x$2)+a*diff(y(x),x)+b*(-b*x^(2*n)+a*x^n+n*x^(n-1))*y(x)=0,y(x), singsol=all)
 
\[ y = \left (\left (\int {\mathrm e}^{\frac {2 b \,x^{n +1}-x a \left (n +1\right )}{n +1}}d x \right ) c_{1} +c_{2} \right ) {\mathrm e}^{-\frac {b \,x^{n +1}}{n +1}} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],{x,2}]+a*D[y[x],x]+b*(-b*x^(2*n)+a*x^n+n*x^(n-1))*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved