Internal
problem
ID
[12135]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-4.
Equations
with
cotangent.
Problem
number
:
40
Date
solved
:
Wednesday, March 05, 2025 at 04:41:56 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2-2*a*b*cot(a*x)*y(x)+b^2-a^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2-2*a*b*Cot[a*x]*y[x]+b^2-a^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a**2 + 2*a*b*y(x)/tan(a*x) - b**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a**2 + 2*a*b*y(x)/tan(a*x) - b**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method