61.28.14 problem 74

Internal problem ID [12495]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 74
Date solved : Thursday, March 13, 2025 at 11:42:58 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \end{align*}

Maple. Time used: 0.203 (sec). Leaf size: 109
ode:=x*diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+(c*x+d)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x \left (\sqrt {a^{2}-4 c}+a \right )}{2}} \left (\operatorname {KummerU}\left (\frac {b \sqrt {a^{2}-4 c}+a b -2 d}{2 \sqrt {a^{2}-4 c}}, b , \sqrt {a^{2}-4 c}\, x \right ) c_{2} +\operatorname {KummerM}\left (\frac {b \sqrt {a^{2}-4 c}+a b -2 d}{2 \sqrt {a^{2}-4 c}}, b , \sqrt {a^{2}-4 c}\, x \right ) c_{1} \right ) \]
Mathematica. Time used: 0.083 (sec). Leaf size: 135
ode=x*D[y[x],{x,2}]+(a*x+b)*D[y[x],x]+(c*x+d)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {1}{2} x \left (\sqrt {a^2-4 c}+a\right )} \left (c_1 \operatorname {HypergeometricU}\left (\frac {a b+\sqrt {a^2-4 c} b-2 d}{2 \sqrt {a^2-4 c}},b,\sqrt {a^2-4 c} x\right )+c_2 L_{-\frac {a b+\sqrt {a^2-4 c} b-2 d}{2 \sqrt {a^2-4 c}}}^{b-1}\left (\sqrt {a^2-4 c} x\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (a*x + b)*Derivative(y(x), x) + (c*x + d)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None