61.28.15 problem 75

Internal problem ID [12496]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 75
Date solved : Wednesday, March 05, 2025 at 07:08:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 73
ode:=x*diff(diff(y(x),x),x)-(a*x+1)*diff(y(x),x)-b*x^2*(b*x+a)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\pi \,\operatorname {erf}\left (\frac {2 b x +a}{2 \sqrt {-b}}\right ) {\mathrm e}^{-\frac {2 b^{2} x^{2}+a^{2}}{4 b}} c_{2} a -2 \sqrt {\pi }\, \sqrt {-b}\, {\mathrm e}^{\frac {1}{2} b \,x^{2}+a x} c_{2} +c_{1} {\mathrm e}^{-\frac {b \,x^{2}}{2}} \]
Mathematica. Time used: 0.552 (sec). Leaf size: 46
ode=x*D[y[x],{x,2}]-(a*x+1)*D[y[x],x]-b*x^2*(b*x+a)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {b x^2}{2}} \left (c_2 \int _1^xe^{b K[1]^2+a K[1]+1} K[1]dK[1]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-b*x**2*(a + b*x)*y(x) + x*Derivative(y(x), (x, 2)) - (a*x + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False