61.31.9 problem 190

Internal problem ID [12611]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-6
Problem number : 190
Date solved : Thursday, March 13, 2025 at 11:53:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y&=0 \end{align*}

Maple. Time used: 0.477 (sec). Leaf size: 175
ode:=x*(x^2+a)*diff(diff(y(x),x),x)+(b*x^2+c)*diff(y(x),x)+s*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x^{2}+a \right )^{\frac {\left (-b +2\right ) a +c}{2 a}} \left (x^{\frac {-c +a}{a}} \operatorname {hypergeom}\left (\left [-\frac {b}{4}+\frac {5}{4}+\frac {\sqrt {b^{2}-2 b -4 s +1}}{4}, -\frac {b}{4}+\frac {5}{4}-\frac {\sqrt {b^{2}-2 b -4 s +1}}{4}\right ], \left [\frac {3 a -c}{2 a}\right ], -\frac {x^{2}}{a}\right ) c_{1} +\operatorname {hypergeom}\left (\left [-\frac {b}{4}+\frac {3}{4}+\frac {c}{2 a}+\frac {\sqrt {b^{2}-2 b -4 s +1}}{4}, -\frac {\sqrt {b^{2}-2 b -4 s +1}}{4}-\frac {b}{4}+\frac {3}{4}+\frac {c}{2 a}\right ], \left [\frac {1}{2}+\frac {c}{2 a}\right ], -\frac {x^{2}}{a}\right ) c_{2} \right ) \]
Mathematica. Time used: 0.582 (sec). Leaf size: 185
ode=x*(x^2+a)*D[y[x],{x,2}]+(b*x^2+c)*D[y[x],x]+s*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 a^{\frac {1}{2} \left (\frac {c}{a}-1\right )} x^{1-\frac {c}{a}} \operatorname {Hypergeometric2F1}\left (\frac {a \left (b+\sqrt {b^2-2 b-4 s+1}+1\right )-2 c}{4 a},\frac {b a-\sqrt {b^2-2 b-4 s+1} a+a-2 c}{4 a},\frac {3}{2}-\frac {c}{2 a},-\frac {x^2}{a}\right )+c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2-2 b-4 s+1}-1\right ),\frac {1}{4} \left (b+\sqrt {b^2-2 b-4 s+1}-1\right ),\frac {a+c}{2 a},-\frac {x^2}{a}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
s = symbols("s") 
y = Function("y") 
ode = Eq(s*x*y(x) + x*(a + x**2)*Derivative(y(x), (x, 2)) + (b*x**2 + c)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None