Internal
problem
ID
[12612]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
191
Date
solved
:
Thursday, March 13, 2025 at 11:53:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(a*x+b)*diff(diff(y(x),x),x)+(c*x^2+(a*lambda+2*b)*x+b*lambda)*diff(y(x),x)+lambda*(c-2*a)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(a*x+b)*D[y[x],{x,2}]+(c*x^2+(2*b+a*\[Lambda])*x+b*\[Lambda])*D[y[x],x]+\[Lambda]*(c-2*a)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") cg = symbols("cg") y = Function("y") ode = Eq(cg*(-2*a + c)*y(x) + x**2*(a*x + b)*Derivative(y(x), (x, 2)) + (b*cg + c*x**2 + x*(a*cg + 2*b))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*a*cg*y(x) - a*x**3*Derivative(y(x), (x, 2)) - b*x**2*Derivative(y(x), (x, 2)) - c*cg*y(x))/(a*cg*x + b*cg + 2*b*x + c*x**2) cannot be solved by the factorable group method