Internal
problem
ID
[12628]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
207
Date
solved
:
Thursday, March 13, 2025 at 11:57:14 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*(a*x^3+b*x^2+c*x+d)*diff(diff(y(x),x),x)+3*(3*a*x^2+2*b*x+c)*diff(y(x),x)+(6*a*x+2*b+lambda)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*(a*x^3+b*x^2+c*x+d)*D[y[x],{x,2}]+3*(3*a*x^2+2*b*x+c)*D[y[x],x]+(6*a*x+2*b+\[Lambda])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") cg = symbols("cg") y = Function("y") ode = Eq((6*a*x + 2*b + cg)*y(x) + (9*a*x**2 + 6*b*x + 3*c)*Derivative(y(x), x) + (2*a*x**3 + 2*b*x**2 + 2*c*x + 2*d)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False