Internal
problem
ID
[12629]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
208
Date
solved
:
Wednesday, March 05, 2025 at 07:49:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^3+b*x^2+c*x+d)*diff(diff(y(x),x),x)+(alpha*x^2+(alpha*gamma+beta)*x+beta*lambda)*diff(y(x),x)-(alpha*x+beta)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^3+b*x^2+c*x+d)*D[y[x],{x,2}]+(\[Alpha]*x^2+(\[Alpha]*\[Gamma]+\[Beta])*x+\[Beta]*\[Lambda])*D[y[x],x]-(\[Alpha]*x+\[Beta])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") cg = symbols("cg") y = Function("y") ode = Eq((-Alpha*x - BETA)*y(x) + (Alpha*x**2 + BETA*cg + x*(Alpha*Gamma + BETA))*Derivative(y(x), x) + (a*x**3 + b*x**2 + c*x + d)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False