Internal
problem
ID
[12630]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
209
Date
solved
:
Thursday, March 13, 2025 at 11:59:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^3+b*x^2+c*x+d)*diff(diff(y(x),x),x)+(lambda^3+x^3)*diff(y(x),x)-(lambda^2-lambda*x+x^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^3+b*x^2+c*x+d)*D[y[x],{x,2}]+(x^3+\[Lambda]^3)*D[y[x],x]-(x^2-\[Lambda]*x+\[Lambda]^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") cg = symbols("cg") y = Function("y") ode = Eq((cg**3 + x**3)*Derivative(y(x), x) - (cg**2 - cg*x + x**2)*y(x) + (a*x**3 + b*x**2 + c*x + d)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False