63.15.7 problem 6(g)
Internal
problem
ID
[13111]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.2.1
Initial
value
problems.
Exercises
page
156
Problem
number
:
6(g)
Date
solved
:
Wednesday, March 05, 2025 at 09:17:30 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x&=1-\operatorname {Heaviside}\left (t -5\right ) \end{align*}
Using Laplace method With initial conditions
\begin{align*} x \left (0\right )&=0\\ x^{\prime }\left (0\right )&=0 \end{align*}
✓ Maple. Time used: 13.320 (sec). Leaf size: 55
ode:=diff(diff(x(t),t),t)+2/5*diff(x(t),t)+2*x(t) = 1-Heaviside(t-5);
ic:=x(0) = 0, D(x)(0) = 0;
dsolve([ode,ic],x(t),method='laplace');
\[
x \left (t \right ) = \frac {1}{2}+\left (\frac {1}{4}+\frac {i}{28}\right ) \operatorname {Heaviside}\left (t -5\right ) {\mathrm e}^{\left (-\frac {1}{5}-\frac {7 i}{5}\right ) \left (t -5\right )}+\left (\frac {1}{4}-\frac {i}{28}\right ) \operatorname {Heaviside}\left (t -5\right ) {\mathrm e}^{\left (-\frac {1}{5}+\frac {7 i}{5}\right ) \left (t -5\right )}+\frac {\left (-7 \cos \left (\frac {7 t}{5}\right )-\sin \left (\frac {7 t}{5}\right )\right ) {\mathrm e}^{-\frac {t}{5}}}{14}-\frac {\operatorname {Heaviside}\left (t -5\right )}{2}
\]
✓ Mathematica. Time used: 0.045 (sec). Leaf size: 91
ode=D[x[t],{t,2}]+4/10*D[x[t],t]+2*x[t]==1-UnitStep[t-5];
ic={x[0]==0,Derivative[1][x][0 ]==0};
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
\[
x(t)\to -\frac {1}{14} e^{-t/5} \left (-\theta (5-t) \left (7 e^{t/5}+e \sin \left (7-\frac {7 t}{5}\right )-7 e \cos \left (7-\frac {7 t}{5}\right )\right )+e \sin \left (7-\frac {7 t}{5}\right )+\sin \left (\frac {7 t}{5}\right )-7 e \cos \left (7-\frac {7 t}{5}\right )+7 \cos \left (\frac {7 t}{5}\right )\right )
\]
✓ Sympy. Time used: 2.761 (sec). Leaf size: 76
from sympy import *
t = symbols("t")
x = Function("x")
ode = Eq(2*x(t) + Heaviside(t - 5) + 2*Derivative(x(t), t)/5 + Derivative(x(t), (t, 2)) - 1,0)
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0}
dsolve(ode,func=x(t),ics=ics)
\[
x{\left (t \right )} = \left (- \frac {\sin {\left (\frac {7 t}{5} \right )}}{14} + \frac {e \sin {\left (\frac {7 t}{5} - 7 \right )} \theta \left (t - 5\right )}{14} - \frac {\cos {\left (\frac {7 t}{5} \right )}}{2} + \frac {e \cos {\left (\frac {7 t}{5} - 7 \right )} \theta \left (t - 5\right )}{2}\right ) e^{- \frac {t}{5}} - \frac {\theta \left (t - 5\right )}{2} + \frac {1}{2}
\]