Internal
problem
ID
[13112]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.2.1
Initial
value
problems.
Exercises
page
156
Problem
number
:
6(h)
Date
solved
:
Wednesday, March 05, 2025 at 09:17:35 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(x(t),t),t)+9*x(t) = sin(3*t); ic:=x(0) = 0, D(x)(0) = 0; dsolve([ode,ic],x(t),method='laplace');
ode=D[x[t],{t,2}]+9*x[t]==Sin[3*t]; ic={x[0]==0,Derivative[1][x][0 ]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(9*x(t) - sin(3*t) + Derivative(x(t), (t, 2)),0) ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)