64.11.45 problem 45

Internal problem ID [13495]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number : 45
Date solved : Tuesday, January 28, 2025 at 05:47:08 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 68

dsolve(diff(y(x),x$2)+6*diff(y(x),x)+13*y(x)=x*exp(-3*x)*sin(2*x)+x^2*exp(-2*x)*sin(3*x),y(x), singsol=all)
 
\[ y = -\frac {3 \,{\mathrm e}^{-3 x} \left (\left (\frac {13 x^{2}}{12}-\frac {26 c_{1}}{3}-\frac {39}{16}\right ) \cos \left (2 x \right )+\left (x^{2}-\frac {2}{13} x -\frac {180}{169}\right ) {\mathrm e}^{x} \cos \left (3 x \right )+\frac {2 \left (x^{2}-\frac {41}{13} x +\frac {563}{338}\right ) {\mathrm e}^{x} \sin \left (3 x \right )}{3}-\frac {13 \sin \left (2 x \right ) \left (x +16 c_{2} \right )}{24}\right )}{26} \]

Solution by Mathematica

Time used: 0.415 (sec). Leaf size: 120

DSolve[D[y[x],{x,2}]+6*D[y[x],x]+13*y[x]==x*Exp[-3*x]*Sin[2*x]+x^2*Exp[-2*x]*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-3 x} \left (\cos (2 x) \int _1^x-\cos (K[2]) K[2] \left (2 \cos (K[2])+e^{K[2]} (2 \cos (2 K[2])+1) K[2]\right ) \sin ^2(K[2])dK[2]+\sin (2 x) \int _1^x\frac {1}{2} \cos (2 K[1]) K[1] \left (2 \cos (K[1])+e^{K[1]} (2 \cos (2 K[1])+1) K[1]\right ) \sin (K[1])dK[1]+c_2 \cos (2 x)+c_1 \sin (2 x)\right ) \]