Internal
problem
ID
[13886]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
53
Date
solved
:
Tuesday, January 28, 2025 at 06:07:25 AM
CAS
classification
:
[_quadrature]
Time used: 0.096 (sec). Leaf size: 339
\begin{align*}
y &= a \\
y &= \frac {\left (\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right )\right ) a -2 x +2 c_{1} \right ) \tan \left (\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right )\right )\right )}{2}+\frac {a}{2} \\
y &= \frac {\left (-\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right )\right ) a +2 x -2 c_{1} \right ) \tan \left (\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )+a \textit {\_Z} +2 c_{1} -2 x \right )\right )\right )}{2}+\frac {a}{2} \\
y &= \frac {\left (\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right )\right ) a +2 x -2 c_{1} \right ) \tan \left (\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right )\right )\right )}{2}+\frac {a}{2} \\
y &= \frac {\left (-\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right )\right ) a -2 x +2 c_{1} \right ) \tan \left (\operatorname {RootOf}\left (\left (a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right ) \left (-a \cos \left (\textit {\_Z} \right )-a \textit {\_Z} +2 c_{1} -2 x \right )\right )\right )}{2}+\frac {a}{2} \\
\end{align*}
Time used: 1.256 (sec). Leaf size: 356
\begin{align*}
y(x)\to \text {InverseFunction}\left [\frac {\left (\sqrt {\text {$\#$1}}-1\right ) \left (\sqrt {a-\text {$\#$1}}-\sqrt {a-1}\right ) \left (\text {$\#$1} a+\sqrt {a-1} a \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}} a-2 \sqrt {\text {$\#$1}} \sqrt {a-1} \sqrt {a-\text {$\#$1}}-2 \text {$\#$1}-a^2+a\right )}{\left (\sqrt {a-1} \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}}-a\right )^2}+2 a \arctan \left (\frac {1-\sqrt {\text {$\#$1}}}{\sqrt {a-1}-\sqrt {a-\text {$\#$1}}}\right )\&\right ][-x+c_1] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\sqrt {\text {$\#$1}}-1\right ) \left (\sqrt {a-\text {$\#$1}}-\sqrt {a-1}\right ) \left (\text {$\#$1} a+\sqrt {a-1} a \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}} a-2 \sqrt {\text {$\#$1}} \sqrt {a-1} \sqrt {a-\text {$\#$1}}-2 \text {$\#$1}-a^2+a\right )}{\left (\sqrt {a-1} \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}}-a\right )^2}+2 a \arctan \left (\frac {1-\sqrt {\text {$\#$1}}}{\sqrt {a-1}-\sqrt {a-\text {$\#$1}}}\right )\&\right ][x+c_1] \\
y(x)\to a \\
\end{align*}