Internal
problem
ID
[13585]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
11,
The
nth
order
homogeneous
linear
differential
equation.
Section
11.6,
Exercises
page
567
Problem
number
:
5
Date
solved
:
Wednesday, March 05, 2025 at 10:04:16 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(t^3-2*t^2)*diff(diff(x(t),t),t)-(t^3+2*t^2-6*t)*diff(x(t),t)+(3*t^2-6)*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=(t^3-2*t^2)*D[x[t],{t,2}]-(t^3+2*t^2-6*t)*D[x[t],t]+(3*t^2-6)*x[t]==0; ic={}; DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq((3*t**2 - 6)*x(t) + (t**3 - 2*t**2)*Derivative(x(t), (t, 2)) - (t**3 + 2*t**2 - 6*t)*Derivative(x(t), t),0) ics = {} dsolve(ode,func=x(t),ics=ics)