Internal
problem
ID
[13586]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
11,
The
nth
order
homogeneous
linear
differential
equation.
Section
11.6,
Exercises
page
567
Problem
number
:
6
Date
solved
:
Friday, March 14, 2025 at 12:17:25 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=t^3*diff(diff(diff(x(t),t),t),t)-(t+3)*t^2*diff(diff(x(t),t),t)+2*t*(t+3)*diff(x(t),t)-2*(t+3)*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=t^3*D[x[t],{t,3}]-(t+3)*t^2*D[x[t],{t,2}]+2*t*(t+3)*D[x[t],t]-2*(t+3)*x[t]==0; ic={}; DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**3*Derivative(x(t), (t, 3)) - t**2*(t + 3)*Derivative(x(t), (t, 2)) + 2*t*(t + 3)*Derivative(x(t), t) - (2*t + 6)*x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics)
NotImplementedError : The given ODE Derivative(x(t), t) - (t**3*Derivative(x(t), (t, 2)) - t**3*Derivative(x(t), (t, 3)) + 3*t**2*Derivative(x(t), (t, 2)) + 2*t*x(t) + 6*x(t))/(2*t*(t + 3)) cannot be solved by the factorable group method