Internal
problem
ID
[13702]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
16,
Higher
order
linear
equations
with
constant
coefficients.
Exercises
page
153
Problem
number
:
16.1
(ii)
Date
solved
:
Wednesday, March 05, 2025 at 10:13:18 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+2*y(x) = sin(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+2*y[x]==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x) - sin(x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)