Internal
problem
ID
[13703]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
16,
Higher
order
linear
equations
with
constant
coefficients.
Exercises
page
153
Problem
number
:
16.1
(iii)
Date
solved
:
Wednesday, March 05, 2025 at 10:13:19 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(x(t),t),t),t),t)-4*diff(diff(diff(x(t),t),t),t)+8*diff(diff(x(t),t),t)-8*diff(x(t),t)+4*x(t) = sin(t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,4}]-4*D[x[t],{t,3}]+8*D[x[t],{t,2}]-8*D[x[t],t]+4*x[t]==Sin[t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(4*x(t) - sin(t) - 8*Derivative(x(t), t) + 8*Derivative(x(t), (t, 2)) - 4*Derivative(x(t), (t, 3)) + Derivative(x(t), (t, 4)),0) ics = {} dsolve(ode,func=x(t),ics=ics)