Internal
problem
ID
[13724]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
19,
CauchyEuler
equations.
Exercises
page
174
Problem
number
:
19.1
(viii)
Date
solved
:
Wednesday, March 05, 2025 at 10:14:02 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-5*x*diff(y(x),x)+5*y(x) = 0; ic:=y(1) = -2, D(y)(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-5*x*D[y[x],x]+5*y[x]==0; ic={y[1]==-2,Derivative[1][y][1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 5*x*Derivative(y(x), x) + 5*y(x),0) ics = {y(1): -2, Subs(Derivative(y(x), x), x, 1): 1} dsolve(ode,func=y(x),ics=ics)