Internal
problem
ID
[13725]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
19,
CauchyEuler
equations.
Exercises
page
174
Problem
number
:
19.1
(ix)
Date
solved
:
Wednesday, March 05, 2025 at 10:14:04 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
With initial conditions
ode:=3*x^2*diff(diff(z(x),x),x)+5*x*diff(z(x),x)-z(x) = 0; ic:=z(1) = 2, D(z)(1) = -1; dsolve([ode,ic],z(x), singsol=all);
ode=3*x^2*D[z[x],{x,2}]+5*x*D[z[x],x]-z[x]==0; ic={z[1]==2,Derivative[1][z][1]==-1}; DSolve[{ode,ic},z[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") z = Function("z") ode = Eq(3*x**2*Derivative(z(x), (x, 2)) + 5*x*Derivative(z(x), x) - z(x),0) ics = {z(1): 2, Subs(Derivative(z(x), x), x, 1): -1} dsolve(ode,func=z(x),ics=ics)