68.1.1 problem Problem 1.1(a)

Internal problem ID [14130]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL EQUATIONS. Problems page 28
Problem number : Problem 1.1(a)
Date solved : Tuesday, January 28, 2025 at 06:15:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 12

dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,exp(x)],singsol=all)
 
\[ y = c_{1} x +{\mathrm e}^{x} c_{2} \]

Solution by Mathematica

Time used: 0.164 (sec). Leaf size: 90

DSolve[(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {K[1]-2}{2 (K[1]-1)}dK[1]-\frac {1}{2} \int _1^x-\frac {K[2]}{K[2]-1}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {K[1]-2}{2 (K[1]-1)}dK[1]\right )dK[3]+c_1\right ) \]