65.14.2 problem 26.1 (ii)

Internal problem ID [13739]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 26, Explicit solutions of coupled linear systems. Exercises page 257
Problem number : 26.1 (ii)
Date solved : Wednesday, March 05, 2025 at 10:14:43 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-4 y \left (t \right )+\cos \left (2 t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 1\\ y \left (0\right ) = 1 \end{align*}

Maple. Time used: 0.299 (sec). Leaf size: 65
ode:=[diff(x(t),t) = x(t)-4*y(t)+cos(2*t), diff(y(t),t) = x(t)+y(t)]; 
ic:=x(0) = 1y(0) = 1; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= \frac {26 \cos \left (2 t \right ) {\mathrm e}^{t}}{17}-\frac {32 \sin \left (2 t \right ) {\mathrm e}^{t}}{17}+\frac {2 \sin \left (2 t \right )}{17}-\frac {9 \cos \left (2 t \right )}{17} \\ y \left (t \right ) &= \frac {13 \sin \left (2 t \right ) {\mathrm e}^{t}}{17}+\frac {16 \cos \left (2 t \right ) {\mathrm e}^{t}}{17}+\frac {\cos \left (2 t \right )}{17}-\frac {4 \sin \left (2 t \right )}{17} \\ \end{align*}
Mathematica. Time used: 0.085 (sec). Leaf size: 259
ode={D[x[t],t]==x[t]-4*y[t]+Cos[2*t],D[y[t],t]==x[t]+y[t]}; 
ic={x[0]==1,y[0]==1}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to e^t \left (2 \sin (2 t) \int _1^0-\frac {1}{4} e^{-K[2]} \sin (4 K[2])dK[2]-2 \sin (2 t) \int _1^t-\frac {1}{4} e^{-K[2]} \sin (4 K[2])dK[2]+\cos (2 t) \left (-\int _1^0e^{-K[1]} \cos ^2(2 K[1])dK[1]\right )+\cos (2 t) \int _1^te^{-K[1]} \cos ^2(2 K[1])dK[1]-2 \sin (2 t)+\cos (2 t)\right ) \\ y(t)\to \frac {1}{2} e^t \left (-\sin (2 t) \int _1^0e^{-K[1]} \cos ^2(2 K[1])dK[1]+\sin (2 t) \int _1^te^{-K[1]} \cos ^2(2 K[1])dK[1]-2 \cos (2 t) \int _1^0-\frac {1}{4} e^{-K[2]} \sin (4 K[2])dK[2]+2 \cos (2 t) \int _1^t-\frac {1}{4} e^{-K[2]} \sin (4 K[2])dK[2]+\sin (2 t)+2 \cos (2 t)\right ) \\ \end{align*}
Sympy. Time used: 0.353 (sec). Leaf size: 146
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) + 4*y(t) - cos(2*t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - 2 C_{1} e^{t} \sin {\left (2 t \right )} - 2 C_{2} e^{t} \cos {\left (2 t \right )} + \frac {2 \sin ^{3}{\left (2 t \right )}}{17} - \frac {9 \sin ^{2}{\left (2 t \right )} \cos {\left (2 t \right )}}{17} + \frac {2 \sin {\left (2 t \right )} \cos ^{2}{\left (2 t \right )}}{17} - \frac {9 \cos ^{3}{\left (2 t \right )}}{17}, \ y{\left (t \right )} = C_{1} e^{t} \cos {\left (2 t \right )} - C_{2} e^{t} \sin {\left (2 t \right )} - \frac {4 \sin ^{3}{\left (2 t \right )}}{17} + \frac {\sin ^{2}{\left (2 t \right )} \cos {\left (2 t \right )}}{17} - \frac {4 \sin {\left (2 t \right )} \cos ^{2}{\left (2 t \right )}}{17} + \frac {\cos ^{3}{\left (2 t \right )}}{17}\right ] \]