Internal
problem
ID
[13740]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
26,
Explicit
solutions
of
coupled
linear
systems.
Exercises
page
257
Problem
number
:
26.1
(iii)
Date
solved
:
Wednesday, March 05, 2025 at 10:14:44 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = 6*x(t)+3*y(t)+exp(t)]; ic:=x(0) = 0y(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]==2*x[t]+2*y[t],D[y[t],t]==6*x[t]+3*y[t]+Exp[t]}; ic={x[0]==0,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(-6*x(t) - 3*y(t) - exp(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)