Internal
problem
ID
[13741]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
26,
Explicit
solutions
of
coupled
linear
systems.
Exercises
page
257
Problem
number
:
26.1
(iv)
Date
solved
:
Wednesday, March 05, 2025 at 10:14:45 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 5*x(t)-4*y(t)+exp(3*t), diff(y(t),t) = x(t)+y(t)]; ic:=x(0) = 1y(0) = -1; dsolve([ode,ic]);
ode={D[x[t],t]==5*x[t]-4*y[t]+Exp[3*t],D[y[t],t]==x[t]+y[t]}; ic={x[0]==1,y[0]==-1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-5*x(t) + 4*y(t) - exp(3*t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)