Internal
problem
ID
[13756]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
28,
Distinct
real
eigenvalues.
Exercises
page
282
Problem
number
:
28.2
(iii)
Date
solved
:
Wednesday, March 05, 2025 at 10:14:59 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 11*x(t)-2*y(t), diff(y(t),t) = 3*x(t)+4*y(t)]; dsolve(ode);
ode={D[x[t],t]==2*x[t]-2*y[t],D[y[t],t]==3*x[t]+4*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-11*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) - 4*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)