68.1.10 problem Problem 1.8(a)

Internal problem ID [14139]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL EQUATIONS. Problems page 28
Problem number : Problem 1.8(a)
Date solved : Tuesday, January 28, 2025 at 06:15:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 59

Order:=6; 
dsolve((x^2-1)^2*diff(y(x),x$2)+(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{6} x^{4}-\frac {7}{60} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{2}+\frac {1}{6} x^{3}-\frac {1}{6} x^{4}+\frac {7}{60} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 70

AsymptoticDSolveValue[(x^2-1)^2*D[y[x],{x,2}]+(x+1)*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {7 x^5}{60}+\frac {x^4}{6}-\frac {x^3}{6}+\frac {x^2}{2}+1\right )+c_2 \left (\frac {7 x^5}{60}-\frac {x^4}{6}+\frac {x^3}{6}-\frac {x^2}{2}+x\right ) \]