65.16.1 problem 29.3 (i)
Internal
problem
ID
[13759]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
29,
Complex
eigenvalues.
Exercises
page
292
Problem
number
:
29.3
(i)
Date
solved
:
Wednesday, March 05, 2025 at 10:15:02 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x \left (t \right )&=-y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )-y \left (t \right ) \end{align*}
✓ Maple. Time used: 0.044 (sec). Leaf size: 81
ode:=[diff(x(t),t) = -y(t), diff(y(t),t) = x(t)-y(t)];
dsolve(ode);
\begin{align*}
x \left (t \right ) &= {\mathrm e}^{-\frac {t}{2}} \left (\sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} \right ) \\
y \left (t \right ) &= \frac {{\mathrm e}^{-\frac {t}{2}} \left (\sin \left (\frac {\sqrt {3}\, t}{2}\right ) \sqrt {3}\, c_{2} -\cos \left (\frac {\sqrt {3}\, t}{2}\right ) \sqrt {3}\, c_{1} +\sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} \right )}{2} \\
\end{align*}
✓ Mathematica. Time used: 0.029 (sec). Leaf size: 112
ode={D[x[t],t]==-y[t],D[y[t],t]==x[t]-y[t]};
ic={};
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
\begin{align*}
x(t)\to \frac {1}{3} e^{-t/2} \left (3 c_1 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} (c_1-2 c_2) \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \\
y(t)\to \frac {1}{3} e^{-t/2} \left (3 c_2 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} (2 c_1-c_2) \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \\
\end{align*}
✓ Sympy. Time used: 0.185 (sec). Leaf size: 92
from sympy import *
t = symbols("t")
x = Function("x")
y = Function("y")
ode=[Eq(y(t) + Derivative(x(t), t),0),Eq(-x(t) + y(t) + Derivative(y(t), t),0)]
ics = {}
dsolve(ode,func=[x(t),y(t)],ics=ics)
\[
\left [ x{\left (t \right )} = \left (\frac {C_{1}}{2} - \frac {\sqrt {3} C_{2}}{2}\right ) e^{- \frac {t}{2}} \cos {\left (\frac {\sqrt {3} t}{2} \right )} - \left (\frac {\sqrt {3} C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- \frac {t}{2}} \sin {\left (\frac {\sqrt {3} t}{2} \right )}, \ y{\left (t \right )} = C_{1} e^{- \frac {t}{2}} \cos {\left (\frac {\sqrt {3} t}{2} \right )} - C_{2} e^{- \frac {t}{2}} \sin {\left (\frac {\sqrt {3} t}{2} \right )}\right ]
\]