Internal
problem
ID
[13760]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
29,
Complex
eigenvalues.
Exercises
page
292
Problem
number
:
29.3
(ii)
Date
solved
:
Wednesday, March 05, 2025 at 10:15:03 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -2*x(t)+3*y(t), diff(y(t),t) = -6*x(t)+4*y(t)]; dsolve(ode);
ode={D[x[t],t]==-2*x[t]+3*y[t],D[y[t],t]==-6*x[t]+4*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(6*x(t) - 4*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)