71.14.5 problem 11

Internal problem ID [14460]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number : 11
Date solved : Thursday, March 13, 2025 at 03:30:50 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=3 \end{align*}

Maple. Time used: 8.764 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-2*y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 3; 
dsolve([ode,ic],y(x),method='laplace');
 
\[ y = -{\mathrm e}^{-x}+{\mathrm e}^{2 x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 18
ode=D[y[x],{x,2}]-D[y[x],x]-2*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (e^{3 x}-1\right ) \]
Sympy. Time used: 0.159 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{2 x} - e^{- x} \]