Internal
problem
ID
[14461]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.3,
page
255
Problem
number
:
12
Date
solved
:
Thursday, March 13, 2025 at 03:30:51 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-2*y(x) = x^2; ic:=y(0) = 11/4, D(y)(0) = 1/2; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,2}]-D[y[x],x]-2*y[x]==x^2; ic={y[0]==11/4,Derivative[1][y][0] ==1/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - 2*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 11/4, Subs(Derivative(y(x), x), x, 0): 1/2} dsolve(ode,func=y(x),ics=ics)