71.18.6 problem 5 c

Internal problem ID [14501]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number : 5 c
Date solved : Thursday, March 13, 2025 at 03:31:44 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d x}y_{1} \left (x \right )&=2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+4 x -2\\ \frac {d}{d x}y_{2} \left (x \right )&=y_{1} \left (x \right )-2 y_{2} \left (x \right )+3 x \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 35
ode:=[diff(y__1(x),x) = 2*y__1(x)-3*y__2(x)+4*x-2, diff(y__2(x),x) = y__1(x)-2*y__2(x)+3*x]; 
dsolve(ode);
 
\begin{align*} y_{1} \left (x \right ) &= c_{2} {\mathrm e}^{-x}+{\mathrm e}^{x} c_{1} +x \\ y_{2} \left (x \right ) &= c_{2} {\mathrm e}^{-x}+\frac {{\mathrm e}^{x} c_{1}}{3}-1+2 x \\ \end{align*}
Mathematica. Time used: 1.445 (sec). Leaf size: 333
ode={D[ y1[x],x]==-2*y1[x]-3*y2[x]+4*x-2,D[ y2[x],x]==y1[x]-2*y2[x]+3*x}; 
ic={}; 
DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} \text {y1}(x)\to e^{-2 x} \left (\cos \left (\sqrt {3} x\right ) \int _1^xe^{2 K[1]} \left (\cos \left (\sqrt {3} K[1]\right ) (4 K[1]-2)+3 \sqrt {3} K[1] \sin \left (\sqrt {3} K[1]\right )\right )dK[1]-\sqrt {3} \sin \left (\sqrt {3} x\right ) \int _1^x\frac {1}{3} e^{2 K[2]} \left (9 \cos \left (\sqrt {3} K[2]\right ) K[2]+2 \sqrt {3} (1-2 K[2]) \sin \left (\sqrt {3} K[2]\right )\right )dK[2]+c_1 \cos \left (\sqrt {3} x\right )-\sqrt {3} c_2 \sin \left (\sqrt {3} x\right )\right ) \\ \text {y2}(x)\to \frac {1}{3} e^{-2 x} \left (3 \cos \left (\sqrt {3} x\right ) \int _1^x\frac {1}{3} e^{2 K[2]} \left (9 \cos \left (\sqrt {3} K[2]\right ) K[2]+2 \sqrt {3} (1-2 K[2]) \sin \left (\sqrt {3} K[2]\right )\right )dK[2]+\sqrt {3} \sin \left (\sqrt {3} x\right ) \int _1^xe^{2 K[1]} \left (\cos \left (\sqrt {3} K[1]\right ) (4 K[1]-2)+3 \sqrt {3} K[1] \sin \left (\sqrt {3} K[1]\right )\right )dK[1]+3 c_2 \cos \left (\sqrt {3} x\right )+\sqrt {3} c_1 \sin \left (\sqrt {3} x\right )\right ) \\ \end{align*}
Sympy. Time used: 0.178 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y__1 = Function("y__1") 
y__2 = Function("y__2") 
ode=[Eq(-4*x - 2*y__1(x) + 3*y__2(x) + Derivative(y__1(x), x) + 2,0),Eq(-3*x - y__1(x) + 2*y__2(x) + Derivative(y__2(x), x),0)] 
ics = {} 
dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)
 
\[ \left [ y^{1}{\left (x \right )} = C_{1} e^{- x} + 3 C_{2} e^{x} + x, \ y^{2}{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} + 2 x - 1\right ] \]