Internal
problem
ID
[14502]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
8.
Linear
Systems
of
First-Order
Differential
Equations.
Exercises
8.3
page
379
Problem
number
:
6
a
Date
solved
:
Friday, March 14, 2025 at 04:47:54 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = 5*y__1(x)/x+4*y__2(x)/x, diff(y__2(x),x) = -6*y__1(x)/x-5*y__2(x)/x]; dsolve(ode);
ode={D[ y1[x],x]==5/x*y1[x]+4/x*y2[x],D[ y2[x],x]==-6/x*y1[x]-5/x*y2[x]}; ic={}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(Derivative(y__1(x), x) - 5*y__1(x)/x - 4*y__2(x)/x,0),Eq(Derivative(y__2(x), x) + 6*y__1(x)/x + 5*y__2(x)/x,0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)