73.4.3 problem 5.1 (c)

Internal problem ID [15085]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.1 (c)
Date solved : Tuesday, January 28, 2025 at 07:30:14 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }-x y^{2}&=\sqrt {x} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 45

dsolve(diff(y(x),x)-x*y(x)^2=sqrt(x),y(x), singsol=all)
 
\[ y = -\frac {\operatorname {BesselY}\left (-\frac {3}{7}, \frac {4 x^{{7}/{4}}}{7}\right ) c_{1} +\operatorname {BesselJ}\left (-\frac {3}{7}, \frac {4 x^{{7}/{4}}}{7}\right )}{x^{{1}/{4}} \left (\operatorname {BesselY}\left (\frac {4}{7}, \frac {4 x^{{7}/{4}}}{7}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {4}{7}, \frac {4 x^{{7}/{4}}}{7}\right )\right )} \]

Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 273

DSolve[D[y[x],x]-x*y[x]^2==Sqrt[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {x^{7/4} \operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (-\frac {3}{7},\frac {4 x^{7/4}}{7}\right )-x^{7/4} \operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (\frac {11}{7},\frac {4 x^{7/4}}{7}\right )+2 \operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (\frac {4}{7},\frac {4 x^{7/4}}{7}\right )+c_1 x^{7/4} \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (-\frac {11}{7},\frac {4 x^{7/4}}{7}\right )-c_1 x^{7/4} \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (\frac {3}{7},\frac {4 x^{7/4}}{7}\right )+2 c_1 \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )}{2 x^2 \left (\operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (\frac {4}{7},\frac {4 x^{7/4}}{7}\right )+c_1 \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )\right )} \\ y(x)\to -\frac {x^{7/4} \operatorname {BesselJ}\left (-\frac {11}{7},\frac {4 x^{7/4}}{7}\right )-x^{7/4} \operatorname {BesselJ}\left (\frac {3}{7},\frac {4 x^{7/4}}{7}\right )+2 \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )}{2 x^2 \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )} \\ \end{align*}