73.4.4 problem 5.1 (d)

Internal problem ID [15086]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.1 (d)
Date solved : Tuesday, January 28, 2025 at 07:30:16 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=1+\left (y x +3 y\right )^{2} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 57

dsolve(diff(y(x),x)=1+(x*y(x)+3*y(x))^2,y(x), singsol=all)
 
\[ y = \frac {-\operatorname {BesselY}\left (-\frac {1}{4}, \frac {\left (x +3\right )^{2}}{2}\right ) c_{1} -\operatorname {BesselJ}\left (-\frac {1}{4}, \frac {\left (x +3\right )^{2}}{2}\right )}{\left (\operatorname {BesselY}\left (\frac {3}{4}, \frac {\left (x +3\right )^{2}}{2}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {3}{4}, \frac {\left (x +3\right )^{2}}{2}\right )\right ) \left (x +3\right )} \]

Solution by Mathematica

Time used: 0.453 (sec). Leaf size: 351

DSolve[D[y[x],x]==1+(x*y[x]+3*y[x])^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+3 \operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )-\left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (\frac {7}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+4 c_1 \left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (-\frac {7}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+12 c_1 \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )-4 c_1 \left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )}{2 (x+3)^3 \left (\operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+4 c_1 \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )\right )} \\ y(x)\to \frac {-\left ((x+3)^3\right )^{2/3} \operatorname {BesselJ}\left (-\frac {7}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )-3 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+\left ((x+3)^3\right )^{2/3} \operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )}{2 (x+3)^3 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )} \\ \end{align*}