72.10.9 problem 9

Internal problem ID [14741]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number : 9
Date solved : Thursday, March 13, 2025 at 04:18:02 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+y \left (t \right ) \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 85
ode:=[diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = x(t)+y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_{1} {\mathrm e}^{\frac {\left (\sqrt {5}+3\right ) t}{2}}+c_{2} {\mathrm e}^{-\frac {\left (\sqrt {5}-3\right ) t}{2}} \\ y &= \frac {c_{1} {\mathrm e}^{\frac {\left (\sqrt {5}+3\right ) t}{2}} \sqrt {5}}{2}-\frac {c_{2} {\mathrm e}^{-\frac {\left (\sqrt {5}-3\right ) t}{2}} \sqrt {5}}{2}-\frac {c_{1} {\mathrm e}^{\frac {\left (\sqrt {5}+3\right ) t}{2}}}{2}-\frac {c_{2} {\mathrm e}^{-\frac {\left (\sqrt {5}-3\right ) t}{2}}}{2} \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 145
ode={D[x[t],t]==2*x[t]+y[t],D[y[t],t]==x[t]+y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{10} e^{-\frac {1}{2} \left (\sqrt {5}-3\right ) t} \left (c_1 \left (\left (5+\sqrt {5}\right ) e^{\sqrt {5} t}+5-\sqrt {5}\right )+2 \sqrt {5} c_2 \left (e^{\sqrt {5} t}-1\right )\right ) \\ y(t)\to \frac {1}{10} e^{-\frac {1}{2} \left (\sqrt {5}-3\right ) t} \left (2 \sqrt {5} c_1 \left (e^{\sqrt {5} t}-1\right )-c_2 \left (\left (\sqrt {5}-5\right ) e^{\sqrt {5} t}-5-\sqrt {5}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.191 (sec). Leaf size: 75
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) - y(t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {C_{1} \left (1 - \sqrt {5}\right ) e^{\frac {t \left (3 - \sqrt {5}\right )}{2}}}{2} + \frac {C_{2} \left (1 + \sqrt {5}\right ) e^{\frac {t \left (\sqrt {5} + 3\right )}{2}}}{2}, \ y{\left (t \right )} = C_{1} e^{\frac {t \left (3 - \sqrt {5}\right )}{2}} + C_{2} e^{\frac {t \left (\sqrt {5} + 3\right )}{2}}\right ] \]