73.5.16 problem 6.7 (d)

Internal problem ID [15127]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 6. Simplifying through simplifiction. Additional exercises. page 114
Problem number : 6.7 (d)
Date solved : Tuesday, January 28, 2025 at 07:34:18 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} y^{\prime }&=4+\frac {1}{\sin \left (4 x -y\right )} \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 19

dsolve(diff(y(x),x)=4+1/sin(4*x-y(x)),y(x), singsol=all)
 
\[ y = 4 x -\frac {\pi }{2}-\arcsin \left (-x +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 101

DSolve[D[y[x],x]==4+1/Sin[4*x-y[x]],y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^x(\csc (4 K[1]-y(x))+4) \sin (4 K[1]-y(x))dK[1]+\int _1^{y(x)}\left (-\sin (4 x-K[2])-\int _1^x(\cot (4 K[1]-K[2])-\cos (4 K[1]-K[2]) (\csc (4 K[1]-K[2])+4))dK[1]\right )dK[2]=c_1,y(x)\right ] \]