73.7.19 problem 19

Internal problem ID [15177]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 8. Review exercises for part of part II. page 143
Problem number : 19
Date solved : Tuesday, January 28, 2025 at 07:40:08 AM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.583 (sec). Leaf size: 16

dsolve(sin(y(x))+(x+y(x))*cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y+x +\cot \left (y\right )-\csc \left (y\right ) c_{1} = 0 \]

Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 31

DSolve[Sin[y[x]]+(x+y[x])*Cos[y[x]]*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x=\csc (y(x)) \int _1^{y(x)}-\cos (K[1]) K[1]dK[1]+c_1 \csc (y(x)),y(x)\right ] \]