Internal
problem
ID
[14793]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
3.
Linear
Systems.
Exercises
section
3.8
page
371
Problem
number
:
13
Date
solved
:
Thursday, March 13, 2025 at 04:19:05 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -x(t)+2*y(t), diff(y(t),t) = 2*x(t)-4*y(t), diff(z(t),t) = 0]; dsolve(ode);
ode={D[x[t],t]==-1*x[t]+2*y[t]+0*z[t],D[y[t],t]==2*x[t]-4*y[t]+0*z[t],D[z[t],t]==0*x[t]+0*y[t]+0*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) + 4*y(t) + Derivative(y(t), t),0),Eq(Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)