Internal
problem
ID
[14794]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
3.
Linear
Systems.
Exercises
section
3.8
page
371
Problem
number
:
14
Date
solved
:
Thursday, March 13, 2025 at 04:19:05 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -2*x(t)+y(t), diff(y(t),t) = -2*y(t)+z(t), diff(z(t),t) = -2*z(t)]; dsolve(ode);
ode={D[x[t],t]==-2*x[t]+1*y[t]+0*z[t],D[y[t],t]==0*x[t]-2*y[t]+1*z[t],D[z[t],t]==0*x[t]+0*y[t]-2*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(2*x(t) - y(t) + Derivative(x(t), t),0),Eq(2*y(t) - z(t) + Derivative(y(t), t),0),Eq(2*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)