72.14.13 problem 17

Internal problem ID [14797]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number : 17
Date solved : Thursday, March 13, 2025 at 04:19:09 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-4 x \left (t \right )+3 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-y \left (t \right )+z \left (t \right )\\ \frac {d}{d t}z \left (t \right )&=5 x \left (t \right )-5 y \left (t \right ) \end{align*}

Maple. Time used: 0.086 (sec). Leaf size: 100
ode:=[diff(x(t),t) = -4*x(t)+3*y(t), diff(y(t),t) = -y(t)+z(t), diff(z(t),t) = 5*x(t)-5*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-t} c_{1} +\frac {6 \,{\mathrm e}^{-2 t} \sin \left (t \right ) c_{2}}{5}-\frac {3 \,{\mathrm e}^{-2 t} \cos \left (t \right ) c_{2}}{5}+\frac {6 c_{3} {\mathrm e}^{-2 t} \cos \left (t \right )}{5}+\frac {3 c_{3} {\mathrm e}^{-2 t} \sin \left (t \right )}{5} \\ y &= {\mathrm e}^{-t} c_{1} +{\mathrm e}^{-2 t} \sin \left (t \right ) c_{2} +c_{3} {\mathrm e}^{-2 t} \cos \left (t \right ) \\ z &= -{\mathrm e}^{-2 t} \left (c_{2} \sin \left (t \right )+\sin \left (t \right ) c_{3} -c_{2} \cos \left (t \right )+\cos \left (t \right ) c_{3} \right ) \\ \end{align*}
Mathematica. Time used: 0.016 (sec). Leaf size: 152
ode={D[x[t],t]==-4*x[t]+3*y[t]+0*z[t],D[y[t],t]==0*x[t]-1*y[t]+1*z[t],D[z[t],t]==5*x[t]-5*y[t]+0*z[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{2} e^{-2 t} \left ((5 c_1-3 c_2+3 c_3) e^t-3 (c_1-c_2+c_3) \cos (t)-3 (3 c_1-3 c_2+c_3) \sin (t)\right ) \\ y(t)\to \frac {1}{2} e^{-2 t} \left ((5 c_1-3 c_2+3 c_3) e^t+(-5 c_1+5 c_2-3 c_3) \cos (t)-(5 c_1-5 c_2+c_3) \sin (t)\right ) \\ z(t)\to e^{-2 t} (c_3 \cos (t)+(5 c_1-5 c_2+2 c_3) \sin (t)) \\ \end{align*}
Sympy. Time used: 0.194 (sec). Leaf size: 104
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(4*x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(y(t) - z(t) + Derivative(y(t), t),0),Eq(-5*x(t) + 5*y(t) + Derivative(z(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{3} e^{- t} + \left (\frac {3 C_{1}}{10} + \frac {9 C_{2}}{10}\right ) e^{- 2 t} \sin {\left (t \right )} - \left (\frac {9 C_{1}}{10} - \frac {3 C_{2}}{10}\right ) e^{- 2 t} \cos {\left (t \right )}, \ y{\left (t \right )} = C_{3} e^{- t} - \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{- 2 t} \cos {\left (t \right )} + \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- 2 t} \sin {\left (t \right )}, \ z{\left (t \right )} = C_{1} e^{- 2 t} \cos {\left (t \right )} - C_{2} e^{- 2 t} \sin {\left (t \right )}\right ] \]