72.14.14 problem 18

Internal problem ID [14798]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number : 18
Date solved : Thursday, March 13, 2025 at 04:19:10 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-10 x \left (t \right )+10 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=28 x \left (t \right )-y \left (t \right )\\ \frac {d}{d t}z \left (t \right )&=-\frac {8 z \left (t \right )}{3} \end{align*}

Maple. Time used: 0.076 (sec). Leaf size: 94
ode:=[diff(x(t),t) = -10*x(t)+10*y(t), diff(y(t),t) = 28*x(t)-y(t), diff(z(t),t) = -8/3*z(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_{1} {\mathrm e}^{\frac {\left (-11+\sqrt {1201}\right ) t}{2}}+c_{2} {\mathrm e}^{-\frac {\left (11+\sqrt {1201}\right ) t}{2}} \\ y &= \frac {c_{1} {\mathrm e}^{\frac {\left (-11+\sqrt {1201}\right ) t}{2}} \sqrt {1201}}{20}-\frac {c_{2} {\mathrm e}^{-\frac {\left (11+\sqrt {1201}\right ) t}{2}} \sqrt {1201}}{20}+\frac {9 c_{1} {\mathrm e}^{\frac {\left (-11+\sqrt {1201}\right ) t}{2}}}{20}+\frac {9 c_{2} {\mathrm e}^{-\frac {\left (11+\sqrt {1201}\right ) t}{2}}}{20} \\ z &= c_{3} {\mathrm e}^{-\frac {8 t}{3}} \\ \end{align*}
Mathematica. Time used: 0.028 (sec). Leaf size: 312
ode={D[x[t],t]==-10*x[t]+10*y[t]+0*z[t],D[y[t],t]==28*x[t]-1*y[t]+0*z[t],D[z[t],t]==0*x[t]+0*y[t]-8/3*z[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {e^{-\frac {1}{2} \left (11+\sqrt {1201}\right ) t} \left (c_1 \left (\left (1201-9 \sqrt {1201}\right ) e^{\sqrt {1201} t}+1201+9 \sqrt {1201}\right )+20 \sqrt {1201} c_2 \left (e^{\sqrt {1201} t}-1\right )\right )}{2402} \\ y(t)\to \frac {e^{-\frac {1}{2} \left (11+\sqrt {1201}\right ) t} \left (56 \sqrt {1201} c_1 \left (e^{\sqrt {1201} t}-1\right )+c_2 \left (\left (1201+9 \sqrt {1201}\right ) e^{\sqrt {1201} t}+1201-9 \sqrt {1201}\right )\right )}{2402} \\ z(t)\to c_3 e^{-8 t/3} \\ x(t)\to \frac {e^{-\frac {1}{2} \left (11+\sqrt {1201}\right ) t} \left (c_1 \left (\left (1201-9 \sqrt {1201}\right ) e^{\sqrt {1201} t}+1201+9 \sqrt {1201}\right )+20 \sqrt {1201} c_2 \left (e^{\sqrt {1201} t}-1\right )\right )}{2402} \\ y(t)\to \frac {e^{-\frac {1}{2} \left (11+\sqrt {1201}\right ) t} \left (56 \sqrt {1201} c_1 \left (e^{\sqrt {1201} t}-1\right )+c_2 \left (\left (1201+9 \sqrt {1201}\right ) e^{\sqrt {1201} t}+1201-9 \sqrt {1201}\right )\right )}{2402} \\ z(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.243 (sec). Leaf size: 87
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(10*x(t) - 10*y(t) + Derivative(x(t), t),0),Eq(-28*x(t) + y(t) + Derivative(y(t), t),0),Eq(8*z(t)/3 + Derivative(z(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} \left (9 - \sqrt {1201}\right ) e^{- \frac {t \left (11 - \sqrt {1201}\right )}{2}}}{56} - \frac {C_{2} \left (9 + \sqrt {1201}\right ) e^{- \frac {t \left (11 + \sqrt {1201}\right )}{2}}}{56}, \ y{\left (t \right )} = C_{1} e^{- \frac {t \left (11 - \sqrt {1201}\right )}{2}} + C_{2} e^{- \frac {t \left (11 + \sqrt {1201}\right )}{2}}, \ z{\left (t \right )} = C_{3} e^{- \frac {8 t}{3}}\right ] \]