73.7.28 problem 28

Internal problem ID [15186]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 8. Review exercises for part of part II. page 143
Problem number : 28
Date solved : Tuesday, January 28, 2025 at 07:40:42 AM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.045 (sec). Leaf size: 26

dsolve(ln(y(x))+(x/y(x)+3)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{\frac {-x \operatorname {LambertW}\left (\frac {3 \,{\mathrm e}^{\frac {c_{1}}{x}}}{x}\right )+c_{1}}{x}} \]

Solution by Mathematica

Time used: 0.930 (sec). Leaf size: 29

DSolve[Log[y[x]]+(x/y[x]+3)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{3} x W\left (\frac {3 e^{\frac {c_1}{x}}}{x}\right ) \\ y(x)\to 1 \\ \end{align*}