Internal
problem
ID
[14805]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
3.
Linear
Systems.
Review
Exercises
for
chapter
3.
page
376
Problem
number
:
7
Date
solved
:
Thursday, March 13, 2025 at 04:19:16 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = Pi^2*x(t)+187/5*y(t), diff(y(t),t) = 555^(1/2)*x(t)+400617/5000*y(t)]; ic:=x(0) = 0y(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]==Pi^2*x[t]+374/10*y[t],D[y[t],t]==Sqrt[555]*x[t]+801234/10000*y[t]}; ic={x[0]==0,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-pi**2*x(t) - 187*y(t)/5 + Derivative(x(t), t),0),Eq(-sqrt(555)*x(t) - 400617*y(t)/5000 + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)