72.16.2 problem 2

Internal problem ID [14819]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number : 2
Date solved : Thursday, March 13, 2025 at 04:19:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 \,{\mathrm e}^{-3 t} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 26
ode:=diff(diff(y(t),t),t)+6*diff(y(t),t)+8*y(t) = 2*exp(-3*t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = -\frac {\left (c_{1} {\mathrm e}^{-2 t}+4 \,{\mathrm e}^{-t}-2 c_{2} \right ) {\mathrm e}^{-2 t}}{2} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 27
ode=D[y[t],{t,2}]+6*D[y[t],t]+8*y[t]==2*Exp[-3*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-4 t} \left (-2 e^t+c_2 e^{2 t}+c_1\right ) \]
Sympy. Time used: 0.249 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(8*y(t) + 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 2*exp(-3*t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + C_{2} e^{- 2 t} - 2 e^{- t}\right ) e^{- 2 t} \]