73.7.44 problem 44

Internal problem ID [15202]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 8. Review exercises for part of part II. page 143
Problem number : 44
Date solved : Tuesday, January 28, 2025 at 07:41:59 AM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.037 (sec). Leaf size: 40

dsolve(y(x)^2*exp(x*y(x)^2)-2*x+2*x*y(x)*exp(x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {\sqrt {x \ln \left (x^{2}-c_{1} \right )}}{x} \\ y &= -\frac {\sqrt {x \ln \left (x^{2}-c_{1} \right )}}{x} \\ \end{align*}

Solution by Mathematica

Time used: 1.259 (sec). Leaf size: 44

DSolve[y[x]^2*Exp[x*y[x]^2]-2*x+2*x*y[x]*Exp[x*y[x]^2]*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\log \left (x^2+c_1\right )}}{\sqrt {x}} \\ y(x)\to \frac {\sqrt {\log \left (x^2+c_1\right )}}{\sqrt {x}} \\ \end{align*}