73.9.10 problem 14.1 (j)

Internal problem ID [15271]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.1 (j)
Date solved : Tuesday, January 28, 2025 at 07:51:24 AM
CAS classification : [[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

\begin{align*} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }&=y \end{align*}

Solution by Maple

dsolve(y(x)*diff(y(x),x$3)+6*diff(y(x),x$2)+3*diff(y(x),x)=y(x),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],{x,3}]+6*D[y[x],{x,2}]+3*D[y[x],x]==y[x],y[x],x,IncludeSingularSolutions -> True]
 

Not solved