73.9.11 problem 14.2 (a)

Internal problem ID [15272]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.2 (a)
Date solved : Tuesday, January 28, 2025 at 07:51:25 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{2 x} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 17

dsolve([diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=0,exp(2*x)],singsol=all)
 
\[ y = {\mathrm e}^{3 x} c_{1} +{\mathrm e}^{2 x} c_{2} \]

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

DSolve[D[y[x],{x,2}]-5*D[y[x],x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{2 x} \left (c_2 e^x+c_1\right ) \]